
J Math Chem (2013) 51:1729–1746
DOI 10.1007/s10910-013-0173-4

ORIGINAL PAPER

Roadmap to spline-fitting potentials in high dimensions

M. Patrício · J. L. Santos · F. Patrício ·
A. J. C. Varandas

Received: 21 January 2013 / Accepted: 22 March 2013 / Published online: 3 April 2013
© Springer Science+Business Media New York 2013

Abstract The use of the theory of splines to approximate the potential energy surface
in molecular dynamics is examined. It is envisaged that such an approximation should
be able to accurately capture the potentials’ behavior and be computationally cost
effective, both for one-dimensional and n-dimensional problems with n arbitrary. In
this regard, the problem of dimensionality is pinpointed, with shape-preserving splines
emerging as a viable alternative for fitting surfaces in multidimensional spaces. An
algorithm is also presented to allow the use of non-uniform meshes with high accuracy
fitting and less interpolation points.

Keywords Splines · Shape-preserving splines · Potential energy surfaces

1 Introduction

A challenging step in reaction dynamics is to model the potential energy surface (PES;
this stands generally both for a curve or hypersurface) that governs the motion of the
nuclei for any arrangement of the latter [1–8]. Although important progress towards
dynamics on-the-fly (the electronic Schrödinger equation is solved simultaneously
to the corresponding equations for the nuclei once assumed the Born-Oppenheimer
approximation for their separation), the traditional scheme of modeling the PES prior
to starting the dynamics studies remains by far the most used approach especially
for small systems (up to a few atoms). In this approach, the two main streams to the
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PES consist of modeling it with a suitable functional form (function or generically
f ), often and hopefully originated from physically motivated arguments [5,7–11],
and of using semi-numerical black-box fitting techniques based on splines or related
interpolation approaches [5,12–14]. Although these mathematical tools offer unbi-
ased and simple approaches to use, they face the serious problem of dimensionality,
so-called [1] X3N−6-explosion (this gives the number of geometries at which the elec-
tronic Schrödinger equation has to be solved if X is the number of points required
to spline-fit a cut of the PES function in one-dimension, 1D, and N the number of
atoms involved). In this work, we examine the capabilities of two types of splines
when high-dimensionality problems are at stake.

Central to on-the-fly (or direct) dynamics approaches is the necessity of evaluating
the forces acting on the nuclei at each time step. Although for particular geometries
some quantum chemistry packages can provide accurate electronic energies, gradients,
and even higher derivatives at moderate cost, this can be prohibitive for approaches
in which an ab initio calculation is performed at each of the millions or even billions
of geometries that may arise during the calculation. Efficient interpolation schemes
then appear as a natural way out. These fitting methods include splines [4,12–15],
modified-Shepard interpolation [16,17], gradient-based multiconfiguration Shepard
interpolation [18], interpolating moving least-squares [19,20], and reproducing ker-
nel Hilbert space [21,22] approaches, just to mention a few; a vast number of other
references to literature on the above and related methods can be found by cross refer-
encing.

The first to employ cubic splines in fitting a PES were McLaughlin and Thomp-
son [12] in their study of the HeH++H2 → He+H+

3 reaction dynamics. For simplicity
reasons, these authors have restricted the space by keeping reaction paths with C2v

symmetry, and were led to conclude that multidimensional spline fitting of ab initio
points can serve as a useful, objective interpolator. Although the method removes the
necessity of choosing (often somewhat arbitrarily) an analytic interpolation function
and can ensure the continuity of the energy and the first derivatives over the entire
hypersurface, several unanswered questions persisted, in particular concerning its use
for large dimensional configuration spaces. This motivated Sathyamurthy and Raff [13]
to develop and apply a 3D cubic spline fitting routine. Despite the unique features of
splines, to our knowledge, no development towards higher dimensionalities have yet
been reported.

Specifically, we will examine here the problem of obtaining a global fit of a PES for
a small molecule. For that purpose, traditional cubic splines (natural cubic splines) will
be compared to shape-preserving splines and both tools will be extended for higher
dimensions. The theory and properties of both spline-types will first be examined for
the 1D case. Shape-preserving splines are known to yield visually pleasing plots, as
properties inherent to the discrete data such as monotonicity are maintained in the
approximation, meaning that these splines are monotonic when the data is monotonic
and present local extrema at the data points that are local extrema [23–25]. Conversely,
it is shown that under certain conditions the natural splines offer a greater accuracy
than the shape-preserving splines at regions of strong curvature when f ∈ Ck , k ≥ 2.
A comparison between the number of operations involved in fitting a PES in higher
dimensions shows that the usage of natural cubic splines is restricted to a small number
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of patches and low dimensions. This paper offers an alternative with dramatically
smaller computational costs.

As noted above, for medium-size molecules (or even relatively modest ones with 4
or more atoms), the modeling of a global analytic potential function can be a mammoth
task, with simplicity calling for strictly numerical techniques to face the problem. The
discretisation of the function requires the employment of grids which should be refined
until a predefined accuracy is obtained. This implies in turn a great computational effort
if high-accuracy is on demand, particularly at regions of large curvature. The use of
non-uniform meshes will then be examined too here, aiming at cost-effectiveness.

The paper is organized as follows. Section 2 is devoted to the definition of both
shape preserving and natural splines. The accuracy offered by the approximations is
examined, and related computational complexities discussed. In Sect. 3, the indepen-
dency on neighbouring patches offered by shape preserving splines is generalized to
the 2D case. An algorithm to fit potentials in a more cost-effective manner is then pro-
posed. Test cases and computational examples will also be reported in Sect. 4, namely
for the popular Morse curve (1D) and a more complicated 2D PES taken from the
literature. Section 5 gathers the conclusions.

2 Functions of one variable

Consider a set of points {xi , i ∈ I }, where I = {0, . . . , n}, and a function z = z(x).
Let hk = xk+1 − xk and h = maxk hk , for k = 0, . . . , n − 1.

2.1 Natural versus shape-preserving splines

The classical natural cubic interpolating spline for the function z = z(x) at the points
{xi , i ∈ I } is a function S that satisfies the conditions [14]

• Si := S|[xi−1,xi ] is a cubic polynomial, for i ∈ I \ {0};
• S(xi ) = zi := z(xi ), for i ∈ I ;
• S ∈ C2[x0, xn];
• S′′(x0) = S′′(xn) = 0.

Determining such a function S is equivalent to computing the 4n coefficients of the
polynomials

Si (x) = ai (x − xi−1)
3 + bi (x − xi−1)

2 + ci (x − xi−1) + di (1)

that satisfy the following set of equations

Si (xi−1) = zi−1; Si (xi ) = zi , for i ∈ I \ {0}; (2)

S′
i (xi ) = S′

i+1(xi ), S′′
i (xi ) = S′′

i+1(xi ) for ∈ I \ {0, n}; (3)

S′′
1 (x0) = S′′

n (xn) = 0. (4)

The determination of these coefficients may be done by solving a 4n × 4n system
of linear equations. It is possible to work out the equations further to reduce the order
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of the matrix of the related linear system, as it is shown on the “Appendix”. However,
the size of the matrix will always depend explicitly on the number of patches taken.

An alternative to natural cubic splines, still to interpolate z, are shape-preserving
splines P [24,26]. These are defined by

• Pi := P|[xi−1,xi ] is a cubic polynomial, for i ∈ I \ {0};
• P(xi ) = zi := z(xi ), for each i ∈ I ;
• P ′(xi ) = �i , for each i ∈ I .

For each value of i ∈ I \ {0, n}, the quantity �i is an approximation to the derivative
of z at xi , given by

�i :=

⎧
⎪⎪⎨

⎪⎪⎩

w1
i + w2

i(
w1

i
δi−1

+ w2
i

δi

) , if δiδi−1 > 0,

0, otherwise

(5)

where

δi := zi+1 − zi

hi
, w1

i = 2hi + hi−1, w2
i = hi + 2hi−1. (6)

The idea of this approximation is to prevent the function values from overshooting
the data by setting the slope of the interpolation spline as the harmonic mean of finite
differences approximations to the derivatives of f . For that purpose, whenever the
forward and backward approximations for the derivative at xk , given respectively by
δk and δk−1, have opposite signs, or one of the approximations is zero, the slope of
the interpolation spline at x = xk is set to be zero. If instead they have the same signs
and in the particular case of hk = hk−1, then the approximation for the derivative
expressed by (5) is easily recognised as the harmonic mean of the discrete slopes:

�k := 2
1

δk−1
+ 1

δk

.

The approximations above for the slopes of z are employed for the points xi , with
i ∈ I \{0, n}. A similar approximation can be employed for the endpoints, cf. [23,24].
The shape preserving spline P may then be interpreted as an Hermite interpolating
spline fitting to a function with values zi and derivatives �i at the points xi . We denote
the spline at the interval [xi−1, xi ] by

Pi (x) = ai (x − xi−1)
3 + bi (x − xi−1)

2 + ci (x − xi−1) + di . (7)

The coefficients of the polynomials may be determined from the linear system related
to the equations

Pi (xi−1) = zi−1, P ′
i (xi−1) = �i−1, (8)

Pi (xi ) = zi , P ′
i (xi ) = �i , (9)
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for i ∈ I \ {0}. Note that for each value of i the coefficients of the polynomial can be
computed independently by solving a 4×4 linear system. Finding all coefficients would
require solving n such linear systems. However, it is easy to see that the unknowns ci

and di may be computed from the Eqs. (8) independently from the other unknowns ai

and bi . The latter may in turn be determined from the coupled equations expressed by
Eq. (9). Finding the shape preserving spline P then translates into solving a system
of linear equations of order 2 for each patch where z is to be approximated by a cubic
polynomial, see “Appendix”. This analysis may turn out to be quite useful when the
dimensionality increases or there is a great number of patches, as it will reduce the
computational cost.

2.2 Error analysis and computational complexity

It is desirable to find estimates for the errors arising in the approximation of a function
by natural and shape-preserving splines. Upper bounds for the infinity and L2 norms
of the errors of the approximation of a given function f ∈ Cr [a, b], with r ∈ N \ {1}
by polynomial cubic splines can be found in Ref. [14]. The results refer to cubic
polynomials that differ from the natural splines only at the end-points. There, the
derivatives of the polynomials are required to equal the derivatives of f , instead of
the polynomials having the second derivative equal to zero. It can be verified that the
bounds set in Ref. [14] are still valid for natural splines. Let S then be the natural
interpolating spline for f . The following results hold [14]:

a) if r ≥ 2, one has

‖ f − S‖∞ ≤ √
8‖ f ′′‖2h3/2 and ‖ f ′ − S′‖∞ ≤ √

8‖ f ′′‖2h1/2

as well as

‖ f − S‖2 ≤ 16‖ f ′′‖2h2 and ‖ f ′ − S′‖2 ≤ 4‖ f ′′‖2h

b) if r ≥ 4, one has

‖ f − S‖∞ ≤ 16
√

2‖ f (4)‖2h7/2 and ‖ f ′ − S′‖∞ ≤ 16
√

2‖ f (4)‖2h5/2.

To enable a comparison between approximating f with a natural cubic spline S
and a shape-preserving spline P , it is also important to find upper bounds for the error
of the approximation of f with the latter. The result is established in the following
theorem.

Theorem Let f ∈ C2[a, b] and P be the corresponding shape-preserving interpo-
lating spline. Then

‖ f − P‖∞ ≤ 1

8
‖ f ′′‖∞h2 + 4h max

i
|�i − z′

i |.
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Proof Let H be the Hermite cubic spline that satisfies

H(xi ) = zi ; H ′(xi ) = z′
i , i ∈ I.

Then one has

‖ f − H‖∞ ≤ 1

8
‖ f ′′‖∞h2.

Moreover, it may be shown that

|H(x) − P(x)|[xi ,xi+1] ≤ (x − xi )|z′
i − �i | + (x − xi )

2/h|z′
i − �i |

+(x − xi )
2(x − xi+1)/h2|z′

i − �i + z′
i+1 − �i+1|

and therefore

‖H − P‖∞ ≤ 4h max
i

|�i − z′
i |.

The result then follows from the inequality

‖ f − P‖∞ ≤ ‖ f − H‖∞ + ‖H − P‖∞.

From the results given above, one concludes that for both natural and shape preserving
splines, when the curvature of f is large, the upper bound for the error is also large.
Note that as long as f ∈ Cr , with r ≥ 2, the upper bound of the error for the shape-
preserving splines is of order O(h2), since � is an approximation order of h to the
derivatives at the node points. For f ∈ C2, the upper bound for the error for the natural
splines is only of order O(h3/2). However, for f ∈ Cr , with r ≥ 4, the upper bound
for the error with these splines is already of order O(h7/2). This seems to imply that
natural splines are better choices, in terms of accuracy, when the function we wish to
approximate has its derivatives of order greater or equal to 4 continuous, whilst for
f ∈ C2 the shape-preserving splines offer a better order approximation.

It is also important to note that the computational complexity of interpolating func-
tions of one variable, employing either natural or shape-preserving splines, increases
with the number of interpolation points. Such a complexity can be inferred from the
number and dimension of matrices one has to invert in order to solve related systems
of linear equations, see Table 1.

Inverting a n×n matrix requires performing an order of n3 multiplications. For that
reason, the computational complexity associated to natural splines has a cubic growth
as a function of the number of interpolation points, while shape-preserving splines
display a linear growth. The latter are therefore more adequate to deal with a large
number of patches. Moreover, a parallel computation approach is straightforward.

3 Functions of two variables

In this section the concept of natural and shape-preserving splines is extended to 2D.
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Table 1 Attributes of the matrices (number of matrices and order) arising in the interpolation

Spline type Attribute Number of patches

1 2 3 4 p

Natural # matrices 1 1 1 1 1

Order 4 8 12 16 4p

Shape-preserving # matrices 1 2 3 4 p

Order 2 2 2 2 2

3.1 Natural versus shape preserving bicubic splines

We now aim to find splines that interpolate a given function z = z(x, y) at a set of
points {(xi , y j ), i ∈ I, j ∈ J }, where I = {0, . . . , nx } and J = {0, . . . , ny}. The
natural bicubic spline is a function S such that [27]

• Si j := S|[xi−1,xi ]×[y j−1,y j ] is a bicubic polynomial, for i ∈ I \ {0}, j ∈ J \ {0};
• S(xi , y j ) = zi j := z(xi , y j ), for each (i, j) ∈ I × J ;
• S ∈ C2([x0, xnx ] × [y0, yny ]);
• ∂2

∂x2 S(x0, y j ) = ∂2

∂x2 S(xnx , y j ) = 0 for j ∈ J \ {0, ny};
• ∂2

∂y2 S(xi , y0) = ∂2

∂y2 S(xi , yny ) = 0 for i ∈ I \ {0, nx };
• ∂2

∂x∂y S(xi , y j ) = ∂2

∂x∂y S(xi , y j ) = 0 for i = 1, nx and j = 1, ny .

We denote
Si j (x, y) =

∑

r,s=0,1,2,3

ars(x − xi−1)
r (y − y j−1)

s, (10)

where ars = ars(i, j) are the local coefficients of the spline. The 16 unknowns can be
determined from the resolution of a linear system of equations of order 16.

To preserve the independency on neighbouring patches, one may generalise the 1D
shape preserving spline definition thus obtaining a spline P that interpolates z, which
will still be referred to as shape-preserving spline for the sake of simplicity, which
satisfies

• Pi j := S|[xi−1,xi ]×[y j−1,y j ] is a bicubic polynomial, for each (i, j) ∈ I \{0}∧ J \{0};
• P(xi , y j ) = zi j := z(xi , y j ), for each (i, j) ∈ I × J ;
• ∂ P

∂x (xi , y j ) = �x
i j , for each (i, j) ∈ I × J ;

• ∂ P
∂y (xi , y j ) = �

y
i j , for each (i, j) ∈ I × J ;

• ∂2 P
∂x∂y (xi , y j ) = �

xy
i j , for each (i, j) ∈ I × J ;

The quantities �x
i j , �

y
i j and �

xy
i j must be computed a priori, using harmonic means of

finite differences approximations of the respective derivatives, as done in 1D case.
Denoting the shape-preserving spline at the i th– j th patch by

Pi j (x, y) =
∑

r,s=0,1,2,3

ars(x − xi−1)
r (y − y j−1)

s (11)

one has 16 coefficients ars = ars(i, j) for each patch [xi−1, xi ] × [y j−1, y j ].
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Table 2 Number of relevant operations

Dimension (d) Spline type Number of patches

1d 2d 3d 4d 5d

1 S 36 232 716 1,616 3,060

P 36 72 108 144 180

2 S 1,616 9.1E4 1.0E6 5.7E6 2.1E7

P 1,116 6,464 1.5E4 2.6E4 4.0E5

3 S 9.1E4 4.5E7 1.7E9 2.3E9 1.7E11

P 9.1E4 7.3E5 2.5E6 5.9E6 1.1E7

4 S 5.7E6 2.3E10 3.0E12 9.4E13 1.4E15

P 5.7E6 9.1E7 4.6E8 1.4E9 3.5E9

5 S 3.6E8 1.2E13 5.1E15 3.9E17 1.1E19

P 3.6E8 1.1E10 8.7E10 3.7E11 1.1E12

6 S 2.3E10 6.0E15 8.8E18 1.6E21 8.7E22

P 2.3E10 1.5E12 1.7E13 9.4E13 3.6E14

3.2 Computational analysis

To enable a comparison between the shape-preserving and natural splines in higher
dimensions, we look at the number of multiplications needed to invert the matrices
related to each of these approximations. If the PES is a function of d dimensions and
the number of patches is p, without working out the equations the use of natural splines
involves an order of (4d p)3 multiplications, while shape-preserving ones require an
order of p(4d)3 such operations. This is illustrated in Table 2, where Gauss elimina-
tion with back substitution is adopted for matrix inversion. This implies performing
n3/3 + n2 − n/3 operations to invert a matrix of order n. Clearly, both methods are
computationally quite expensive. However, the dimension of the matrices that one has
to invert when utilising shape-preserving splines is much smaller than using natural
splines, making it far more feasible for smaller values of d. As we have presented
the problem thus far, as the number of dimensions increases, so does the size of the
matrices one has to invert, crippling the application of splines to high values of d.
However, it is possible to solve the problem for each dimension independently, as
has been noted elsewhere [28], for example. We include the details on how to reduce
a problem in d dimensions to problems in d − 1 dimensions in the “Appendix”. In
practice, this means that using shape-preserving splines to approximate a function of
d dimensions, 8d−1 matrices of order 2 have to be inverted at each patch: if the number
of patches is p, this translates into p8d−1 matrices. This number grows dramatically
as d increases, which is reflected on the number of relevant operations presented in
Table 3, but the order of the matrices remains equal to 2 instead of growing to accom-
modate the number of patches and the dimensionality of the problem. This means
that approximating a potential in d dimensions is simply a matter of having sufficient
computers and computation time.

123



J Math Chem (2013) 51:1729–1746 1737

Table 3 Number of relevant operations when solving separately for each dimension

Dimension (d) Spline type Number of patches

1d 2d 3d 4d 5d

1 P 6 12 18 24 30

2 P 48 192 432 768 1,200

3 P 384 3,072 10,368 24,576 48,000

4 P 3,072 49,152 2.5E5 7.9E5 1.9E6

5 P 24,576 7.9E5 6.0E6 2.5E7 7.7E7

6 P 2.0E5 1.3E7 1.4E8 8.1E8 3.1E9

9 P 1.0E8 5.2E10 2.0E12 2.6E13 2.0E14

As noted above in the paper, the computation of an accurate energy point from
electronic structure methods can be a rather expensive process [29]. As a result, the
number of points where the value of the potential is required should be minimized,
specially when working in higher dimensions. It is also important to reduce the number
of patches without compromising the accuracy of the approximation. A question that
arises naturally is then whether the location of the interpolation points can be chosen
a priori so that more accurate approximations are obtained with an equal number of
interpolation points. Bearing this in mind, we have established the algorithm included
below. The idea is to start from two coarse uniform meshes X1 = (x1( j)) j and X2 =
(x2( j)) j , with mesh widths h and h/2, respectively, and compute the related splines P1
and P2 that interpolate the potential on such points. A refined mesh X3 = (x3( j)) j is
then generated at each iteration by adding points to X2 at the locations where P1 − P2
is greater than or equal to a given tolerance. The spline P3 related to this refined mesh
X3 is then compared to P2. The iterative process is continued by refining X3 further.

Algorithm 1 Given: T ol, X1, X2.

1. Compute P1, P2 and e := ‖P2 − P1‖∞.
2. If e < T ol, go to step 5. Else, go to step 3.
3. Let X3 = X2 and x2( j) the j th node of the mesh X2. For each value of j from 1 up

to |X2|−1, where |X2| is the cardinal of X2, compute ε = ‖P2−P1‖|[x2( j),x2( j+1)].
If ε > T ol, add the point 1/2(x2( j) + x2( j + 1)) to the mesh X3.

4. Let P1 := P2, X1 = X2 and X2 = X3. Compute P2 to fit the desired function
over the mesh X2, over the relevant domain. Compute e := ‖P2 − P1‖∞. Go back
to step 2.

5. Let X = X2. Compute P to fit the potential over X2.

4 Numerical discussion

As case studies, we will discuss the 1D Morse potential, a 2D modified Morse potential,
and a more realistic 3D PES (referred to as DMBE IV [30]) once frozen one degree
of freedom (in this case, the included � HOO that has been fixed at the equilibrium
value). Although of no great relevance in this work, dimensions for the stretching
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coordinates are in bohr (a0 = 0.5292 × 10−10 m), with the energy coming in hartree
(1Eh = 4.3597 aJ). They will be omitted heretofore for convenience.

The modified Morse potential in 2D, expressed in terms of displacements from
equilibrium x , y ∈ [−0.5, 5.5], assumes the form [31]

V (x, y) = VM (x) + VM (y) + 0.1(x2 y + xy2)e[−2(x2+y2)], (12)

with VM being the one-dimensional Morse potential

VM (x) = −18e−x (2 − e−x ). (13)

4.1 One-dimensional potential

We start by fitting Eq. (13) with both natural and shape-preserving splines, employ-
ing standard functions already implemented in Matlab, so that we can compare both
approximations, cf. Ref. [24].

Consider the Morse potential VM expressed by Eq. (13) and represented in Fig. 1 by
the solid black line. The problem of interpolating this 1D function offers interesting
challenges that are important to discuss before proceeding to interpolating functions
with more dimensions. We start by fitting VM over the domain I = [−0.5, 5.5]. A
uniform mesh with 7 nodes is employed to obtain two approximations: a natural spline
S and a shape-preserving spline P . Both are represented in Fig. 1. By observing the
plots it is clear that S is a better approximation than P in I1 = [−0.5, 0.5], whilst both
splines offer a good approximation in I2 = [0.5, 5.5]. The errors of approximations
of VM by natural and shape-preserving splines, employing a uniform mesh with mesh
width h, are included in Table 4. These results are in accordance with the analysis
included in Sect. 2. Indeed, since VM ∈ C∞, we expect S to be more accurate than P
at regions where the curvature is large.

We have seen that shape-preserving splines, besides preserving certain geometrical
features of the data, are much more straightforward and computationally feasible.
However, as h decreases and the number of patches increases, the computational
cost will still increase greatly. It is then important to illustrate how Algorithm 1 can be
employed to generate a non-uniform mesh for the approximation of the Morse potential
VM . We start by generating two grids, X1 and X2, respectively a uniform grid with
mesh width h = 1 and a refined uniform grid with h = 0.5. The corresponding shape
preserving splines P1 and P2 are computed, as well as the norms of P1 − P2 and
P2 − VM . The latter grid is then refined at each iteration by successive bisections
until ‖P1 − P2‖∞ < T ol, see Table 5. Note that 3 iterations are sufficient to reach
the tolerance T ol = 0.1, with only one extra iteration being required to reach the
tolerance T ol = 0.01 and two more for the tolerance T ol = 0.001.

4.2 Two-dimensional potentials

Let us now consider the symmetric 2D modified-Morse potential represented in Fig. 2.
Using the shape-preserving spline P defined earlier, we fit the potential using both
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Fig. 1 Fitting for 1D Morse potential; uniform mesh with 7 nodes

Table 4 L∞ norm of the error of the approximations of VM

Spline type h

1 0.5 0.25 0.125 0.0625

S 2.6393 0.4449 0.0469 0.0038 0.0003

P 4.0995 0.9053 0.1358 0.0267 0.0059

uniform and non-uniform meshes. Several uniform mesh side-sizes h have been
employed. Table 6 shows the errors of the approximations, both in the L2 and the
∞ norms. As expected, the error decreases with h. Moreover, it is larger in the areas
where the curvature is larger, as can be seen in Fig. 3.

Non-uniform meshes are also used to obtain improved approximations for each
value of h, allowing for a better distribution of the errors in the approximation, see
Fig. 4. These meshes have exactly the same number of points as the corresponding
uniform meshes and are of the form X × X , where X is a non-uniform mesh generated
by Algorithm 1. The symmetry of the problem suggests that it is sufficient to consider
meshes of this form. The errors of these approximations are included in Table 6.
The same procedure is adapted to approximate the DMBE IV potential. The errors
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Table 5 Error in the approximation to the Morse potential with a shape-preserving spline, using Algorithm
1 to select points

T ol Iteration number

1 2 3 4 5 6

0.1

‖P1 − P2‖∞ 9.7E−1 1.5E−1 3.1E−2 – – –

‖P1 − P2‖L2 1.7E−1 3.4E−3 1.3E−4 – – –

‖P2 − VM‖∞ 1.4E−1 4.8E−2 4.8E−2 – – –

‖P2 − VM‖L2 3.9E−3 4.2E−4 4.0E−4 – – –

0.01

‖P1 − P2‖∞ 9.7E−1 1.5E−1 3.1E−2 8.9E−3 – –

‖P1 − P2‖L2 1.7E−1 3.8E−3 1.1E−4 5.7E−6 – –

‖P2 − VM‖∞ 1.4E−1 2.7E−2 5.9E−3 9.0E−3 – –

‖P2 − VM‖L2 3.9E−3 1.1E−4 7.8E−6 7.8E−6 – –

0.001

‖P1 − P2‖∞ 9.7E−1 1.5E−1 3.1E−2 6.9E−3 1.6E−3 4.0E−4

‖P1 − P2‖L2 1.7E−1 3.8E−3 1.1E−4 3.2E−6 9.3E−8 2.8E−9

‖P2 − VM‖∞ 1.4E−1 2.7E−2 5.9E−3 1.4E−3 8.5E−4 8.5E−4

‖P2 − VM‖L2 3.9E−3 1.1E−4 3.2E−6 1.9E−7 1.1E−7 1.1E−7

−2
0

2
4

6

−2

0

2

4

6
−40

−30

−20

−10

0

x

Morse potential

y

Fig. 2 (Color online) Representation of 2D symmetric Morse-type potential
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Table 6 Errors in the approximation to the Morse potential employing shape-preserving splines with both
uniform and non-uniform meshes

Grid Norm h

1 1/2 1/4 1/8 1/16 1/32 1/64

Uniform L2 1.0 2.2E−1 4.1E−2 8.8E−3 1.7E−3 3.1E−4 5.6E−5

∞ 10.0 3.3 9.0E−1 2.7E−1 7.3E−2 1.9E−2 4.8E−3

Algorithm L2 – – 8.2E−3 1.4E−3 1.7E−4 3.9E−5 7.1E−6

∞ – – 1.1E−1 2.7E−2 4.8E−3 1.2E−3 3.5E−4

x

y

0.07

0.06

0.05

0.04

0.03

0.02

0.01

−0.5

5.5

5.5
−0.5

Fig. 3 Errors in approximation of 2D symmetrical Morse-type potential using a uniform mesh, h = 0.25.
Contours, in Eh, are at 0.00001, 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.05, and 0.07. Darker regions
indicate larger errors

of the approximation of the potential are displayed in Table 7. Clearly, the errors
decrease greatly and in an approximately linear way with the mesh width, though a
greater number of mesh points implies that a greater computational effort must be
made. However, even though this does affect the number of operations that must be
performed, hence also the computing time, it does not hinder the feasibility of the
interpolation with shape-preserving splines. Indeed, the dimensions of the matrices
that must be inverted to compute the coefficients of these splines does not depend on the
number of patches. Generalising the approach to higher dimensions is straightforward.
If a small tolerance is set, a greater number of patches will be required, which implies
time-consuming computations. However, parallelisation is straightforward.
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x

y

0.07

0.06

0.05

0.04

0.03

0.02

0.01

5.5−0.5

5.5

−0.5

Fig. 4 Errors in approximation of 2D symmetrical Morse potential using a non-uniform mesh with 25
points, corresponding to h = 0.25. Contours as in Fig. 3, with darker regions indicating larger errors

Table 7 Error in approximations to the DMBE IV potential

Grid Norm h

1 1/2 1/4 1/8 1/16 1/32 1/64

Uniform L2 1.2E−2 5.5E−3 2.7E−3 1.3E−3 6.6E−4 3.3E−4 1.1E−4

∞ 1.8E−1 1.0E−1 5.0E−2 2.3E−2 1.2E−2 5.8E−3 1.3E−3

Algorithm L2 – – 1.7E−3 7.7E−4 4.0E−4 2.1E−4 1.7E−4

∞ – – 1.6E−2 8.0E−3 3.7E−3 2.3E−3 2.9E−3

5 Conclusions

Even though for 1D problems natural splines offer, for similar grids of points and
in some cases, more accuracy than shape-preserving splines, the former turn out to
be inadequate when considering functions of several variables. The dimension of the
matrices that must be dealt with when fitting with natural splines vary on both the
dimension of the interpolated function and the number of patches, while the order of
matrices related to shape-preserving splines is invariant. This aspect renders the usage
of natural splines in higher dimensions unfeasible. An algorithm was presented in this
paper to allow the computation of non-uniform meshes that make it possible to obtain
higher accuracy fitting with less interpolation points. This has no effect on the feasi-
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bility of the interpolation, but rather on how much time all the necessary computations
will take. In a future report, we hope to generalize the algorithm to many dimensions
and relate the tolerance of the algorithm to the error of fitting approximation.

Acknowledgments This work is financed by FEDER through ”Programa Operacional Factores de
Competitividade—COMPETE” and national funds under the auspices of Fundação para a Ciência e a
Tecnologia, Portugal (projects PTDC/QUI-QUI/099744/2008, and PTDC/ AAC-AMB/099737/2008).

6 Appendix

6.1 Functions of one variable

The conditions that must be satisfied by the natural cubic spline S for the function
z = z(x) at the points {xi , i ∈ I } have been reviewed in Sect. 2. Since it must satisfy,
for all i ∈ I \ {0}, Si (xi−1) = zi−1, n unknowns are trivially determined, di = zi−1.
Also, the continuity requirements for the first and second derivatives at the points xi ,
for i ∈ I \ {0, n}, imply that

ci+1 = 3ai h
2
i + 2bi hi + ci ; bi+1 = 3ai hi + bi .

Together with the conditions at the endpoints x0 and xn given by

b1 = 0; bn = −3anhn,

this allows the elimination of all the unknowns except a0, a1, . . . , an−1 and c1 from
the remaining conditions expressed by

Si (xi ) := zi , for i ∈ I \ {0}.

It is then sufficient to invert a n×n matrix to compute the coefficients of the spline.
A similar analysis may be carried out for the shape-preserving cubic spline P for

the function z = z(x), with the difference that the coefficients can be computed for
each patch, independently of the other patches. From the conditions

Pi (xi−1) = zi−1; P ′
i (xi−1) = �i−1, for i ∈ I \ {0}

one concludes that di = zi−1 and ci = �i−1. Then, for each patch, only the conditions

Pi (xi ) = zi ; P ′
i (xi ) = �i , for i ∈ I \ {0}

need to be resolved in order to find the remaining unknowns ai and bi . This translates
into a total of n matrices, each of order 2 × 2, that have to be inverted.
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6.2 Dealing with higher dimensions

We start by looking at how to determine the coefficients of a shape-preserving bicubic
spline P = P(x, y) for the function z = z(x, y) at the points {(xi , y j ), i ∈ I, j ∈ J },
where I ={0, . . . , nx } and J ={0, . . . , ny}. These can be determined independently
for each patch. The purpose is to show that the coefficients of this 2D spline may be
found by solving problems for 1D cubic splines, in which the order of the matrices
involved (after computing the variables which may be trivially determined) is 2. The
generalisation to higher dimensions is straightforward implying that the n-dimensional
problem is reducible to a 1D problem, as we will see. The spline P is denoted by

Pi j (x, y) =
∑

r=0,1,2,3

∑

s=0,1,2,3

ars(x − xi−1)
r (y − y j−1)

s, (14)

which may be rewritten as

Pi j (x, y) =
∑

r=0,1,2,3

br (y)[h(x)]r , (15)

where for r = 0, 1, 2, 3 one has

br (y) =
∑

s=0,1,2,3

ars[k(y)]s, (16)

and the notation h(x) = (x − xi−1) and k(y) = (y − y j−1) was employed. The
dependence of the coefficients br on both i and j was not made explicit on the notation
for the sake of simplicity, but indeed they vary from patch to patch. Now, for y = yl ,
where l = j − 1, j , (15) reads

Pi j (x, yl) =
∑

r=0,1,2,3

br (yl)[h(x)]r . (17)

To determine the constants br (yl) it suffices to consider the interpolation conditions
for z and its derivative in respect to x at the corners of the patch [xi−1, xi ]×[y j−1, y j ],
giving rise to the equation

Bl = H−1Cl , (18)

where the matrices above read

Bl =

⎡

⎢
⎢
⎣

b0(yl)

b1(yl)

b2(yl)

b3(yl)

⎤

⎥
⎥
⎦ , H =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
1 h(xi ) h2(xi ) h3(xi )

0 1 2h(xi ) 3h2(xi )

⎤

⎥
⎥
⎦ Cl =

⎡

⎢
⎢
⎣

zi−1, l

�x
i−1,l
zi,l

�x
i,l

⎤

⎥
⎥
⎦ .
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Likewise one has

d

dx
[Pi j (x, yl)] =

∑

r=0,1,2,3

b′
r (yl)

d

dx
([h(x)]r ) (19)

and the coefficients b′
r (the prime symbol is not related to the derivative) can be

determined from the interpolation conditions for the derivatives in order to y of both
z and its derivative in respect to x at the corners of the patch. The resulting equation
is then

B′
l = H−1C′

l , (20)

where the matrices B′
l and C′

l read

B′
l =

⎡

⎢
⎢
⎣

b′
0(yl)

b′
1(yl)

b′
2(yl)

b′
3(yl)

⎤

⎥
⎥
⎦ , H =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
1 h(xi ) h2(xi ) h3(xi )

0 1 2h(xi ) 3h2(xi )

⎤

⎥
⎥
⎦ C′

l =

⎡

⎢
⎢
⎣

�
y
i−1,l

�
xy
i−1,l
�

y
i,l

�
xy
i,l

⎤

⎥
⎥
⎦ .

Finally, the sought coefficients of the bicubic polynomial can be computed:

Ar = K−1Dr , (21)

where

Ar =

⎡

⎢
⎢
⎣

ar0
ar1
ar2
ar3

⎤

⎥
⎥
⎦ , K =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
1 k(x j ) k2(x j ) k3(x j )

0 1 2k(x j ) 3k2(x j )

⎤

⎥
⎥
⎦ Dr =

⎡

⎢
⎢
⎣

br (y j−1)

b′
r (y j−1)

br (y j )

b′
r (y j )

⎤

⎥
⎥
⎦ .

A similar reasoning is valid for the bicubic interpolating spline Q for the function
w = w(X1, . . . , Xn), where now Xi denotes the i th spacial coordinate. This will
allow reducing a problem in d dimensions to a problem in d − 1 dimensions. The
spline Q may be denoted by

Qi1...in (X1, . . . , Xn)

=
∑

r1,...,rn=0,1,2,3

ar1,..., rn (X1 − x1
i1−1)

r1 . . .
(
Xn − xn

in−1

)rn ,

for X j ∈ [x j
i j −1, x j

i j
]. Now, Q may be rewritten as

Qi1...in (X1, . . . , Xn)

=
∑

r1,...,rn−1=0,1,2,3

br1,..., rn−1

(
X1 − x1

i1−1

)r1
. . .

(
Xn−1 − xn−1

in−1−1

)rn−1
,
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where

br1,...,rn−1 =
∑

rn=0,1,2,3

ar1,...,rn

(
Xn − xn

in−1

)rn .
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